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1. Introduction

We consider a (3+1)-dimensional vectorial gauge theory (at zero temperature and chemical

potential) with the gauge group SU(Nc) and Nf massless fermions transforming accord-

ing to the fundamental representation of this group. For Nc = 3, if one took Nf = 2,

this would be an approximation to actual quantum chromodynamics (QCD) with just

the u and d quarks, since their current quark masses are small compared with the scale

ΛQCD ' 400 MeV. We restrict here to the range Nf < (11/2)Nc for which the theory is

asymptotically free. An analysis using the two-loop beta function and Schwinger-Dyson

equation leads to the inference that for Nf in this range, the theory includes two phases:

(i) for 0 ≤ Nf ≤ Nf,cr a phase with confinement and spontaneous chiral symmetry break-

ing (SχSB); and (ii) for Nf,cr ≤ Nf ≤ (11/2)Nc a non-Abelian Coulomb phase with no

confinement or spontaneous chiral symmetry breaking. We shall refer to Nf,cr, the critical

value of Nf , as the boundary of the non-Abelian Coulomb (conformal) phase [1]. Here

we take electroweak interactions to be turned off. We denote the fermions as fa
i with

a = 1, . . . , Nc and i = 1, . . . , Nf . The theory has an SU(Nf )L × SU(Nf )R × U(1)V global

symmetry (the U(1)A being explicitly broken by instantons), which is spontaneously broken

to SU(Nf )V × U(1)V by the formation of a bilinear fermion condensate.

For Nf slightly less than Nf,cr, the theory exhibits an approximate infrared (IR) fixed

point with resultant walking behavior. That is, as the energy scale µ decreases from large

values, α = g2/(4π) (g being the SU(Nc) gauge coupling) grows to be O(1) at a scale Λ, but

increases only rather slowly as µ decreases below this scale, so that there is an extended

interval in energy below Λ where α is large, but slowly varying. Associated with this slowly

running behavior, the resultant dynamically generated fermion mass, Σ, is much smaller

than Λ. In addition to its intrinsic field-theoretic interest, this walking behavior has played
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an important role in theories of dynamical electroweak symmetry breaking [2]–[7]. As Nf

approaches Nf,cr from below, quantities with dimensions of mass vanish continuously; i.e.,

the chiral phase transition separating phases (i) and (ii) is continous. Recently, meson

masses and other quantities such as the generalized pseudoscalar decay constant fπ were

calculated in the walking limit of an SU(Nc) gauge theory [8].

In the present paper we shall investigate how meson masses and other quantities change

as one decreases Nf below Nf,cr, moving away from the boundary, as a function of Nf ,

between phases (i) and (ii), deeper into the confined phase. Our paper is thus a study of the

change (crossover) between the walking behavior that occurs near to this boundary, and

the non-walking behavior that occurs for smaller Nf . In a non-walking (asymptotically

free, confining) theory such as real QCD, as the energy scale µ decreases through Λ, α

increases rapidly through values of order unity, triggering spontaneous chiral symmetry

breaking on this scale, so that Σ ∼ Λ. This is quite different from a theory with walking,

in which Σ ¿ Λ. As in ref. [8], we use the Schwinger-Dyson (SD) equation to compute the

dynamical fermion mass Σ (generalized constituent quark mass) and then insert this into

the Bethe-Salpeter (BS) equation to obtain the masses of the low-lying mesons. We restrict

to an interval of Nf values for which the theory has an infrared fixed point (as calculated

from the beta function, to be discussed further below). The reason for this is that it makes

our calculations more robust since for our interval of Nf we can avoid having to introduce a

cutoff on the growth of α in the infrared. If one uses Schwinger-Dyson and Bethe-Salpeter

equations to explore a region of Nf where the beta function does not have an infrared fixed

point, one must use such an IR cutoff, which leads to cutoff-dependence of the results.

Some related work is in [9]–[12]. For definiteness, we shall take Nc = 3; however, as will

be seen, Nc only enters indirectly, via the dependence of the value of the infrared fixed

point α∗ on Nc. Hence, our findings may also be applied in a straightforward way, with

appropriate changes in the value of α∗, to an SU(Nc) gauge theory with a different value

of Nc.

This paper is organized as follows. In section II we review some background material

concerning the beta function, approximate infrared fixed point, and walking behavior.

Section III includes a discussion of the Schwinger-Dyson equation and our solution of it, as

well as our calculation of the pseudoscalar decay constant fP , the generalization of fπ. In

section IV we present our calculation of meson masses using the Bethe-Salpeter equation.

Section V contains our conclusions.

2. Preliminaries

In order to study meson masses and other quantities as one moves away from the bound-

ary between the confined phase with spontaneous chiral symmetry breaking and the non-

Abelian Coulomb phase, it is first necessary to know as accurately as possible where this

boundary lies, as a function of Nf , i.e., to know the value of Nf,cr. For sufficiently large Nf ,

the beta function (calculated to the maximal scheme-independent order, namely two-loops)
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has an IR fixed point at

α∗ =
−4π(11Nc − 2Nf )

34N2
c − 13NcNf + 3N−1

c Nf

. (2.1)

Requiring that α∗ be sufficiently large as to yield spontaneous symmetry breaking in

the context of an approximate solution to the Schwinger-Dyson gap equation for the in-

verse propagator of a fermion transforming according to the fundamental representation of

SU(Nc) yields the condition that Nf < Nf,cr, where [7]

Nf,cr =
2Nc(50N

2
c − 33)

5(5N2
c − 3)

. (2.2)

For Nc = 3 this gives Nf,cr ' 11.9. These estimates are only rough, in view of the strongly

coupled nature of the physics. Effects of higher-order gluon exchanges and instantons have

been studied in refs. [13]. In principle, lattice gauge simulations provide a way to determine

Nf,cr, but the groups that have studied this have not reached a consensus [14].

In our analysis, what we actually vary is the value of the approximate IR fixed point

α∗, which depends parametrically on Nf . Thus, although our SD and BS equations are

semi-perturbative, the analysis is self-consistent in the sense that our αcr really is the value

at which, in our approximation, one passes from the confinement phase to the non-Abelian

Coulomb phase, and our values of α do span the interval over which there is a crossover

from walking to QCD-like (i.e., non-walking) behavior.

As is evident from the above results, decreasing Nf below Nf,cr has the effect of increas-

ing α∗ and thus moving the theory deeper in the phase with confinement and spontaneous

chiral symmetry breaking, away from the boundary with the non-Abelian Coulomb phase.

This is the key parametric dependence that we shall use for our study. Our aim is to inves-

tigate how meson masses and other observable quantities depend on Nf in the crossover

region; operationally, what we actually vary is α∗. In ref. [8] the range of α∗ used for the

calculation of meson masses was chosen to be 0.89 ≤ α∗ ≤ 1.0, an interval where there is

pronounced walking behavior. For the case Nc = 3 considered in ref. [8] and here, given the

above-mentioned value, αcr = π/4, it follows that this lower limit, α∗ = 0.89, is about 12%

greater than this critical coupling. The reason for this choice of lower limit on α∗ was that

the hadron masses become exponentially small relative to the scale Λ as α∗ − αcr → 0+,

rendering numerical evaluations of the relevant integrals increasingly difficult in this limit.

For our study of the shift away from walking behavior we consider an interval extending

to larger couplings, from α∗ = 1.0 to α∗ = 2.5. Our upper limit is chosen in order for the

ladder approximation used in our solutions of the Schwinger-Dyson and Bethe-Salpeter

equations to have reasonable reliability. From eq. (2.1) it follows that α∗ = 0.89 corre-

sponds to Nf = 11.65, about 2% less than Nf,cr [15]. For a coupling as large as α∗ = 2.5,

the semi-perturbative methods used to derive eqs. (2.1) are subject to sigificant corrections

from higher-order perturbative, and from nonperturbative, contributions; recognizing this,

the above upper limit of α∗ corresponds formally to Nf ' 9.8, a roughly 20% reduction

from Nf,cr = 11.9. Since the chiral transition which occurs as Nf increases through Nf,cr

is second-order (continuous), and since there is no spontaneous chiral symmetry breaking
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Figure 1: Numerical solutions for Σ, for several values of α∗ (indicated by ♦). For comparison,

we show eq. (3.1) with c = 4.0 from a fit to the results for 0.89 ≤ α∗ ≤ 1.0.

in the non-Abelian Coulomb phase, it follows that as Nf ↗ Nf,cr, (i) the masses of all

hadron states vanish continuously; and (ii) hadron states that are related to each other by

a parity reflection become degenerate.

3. Schwinger-Dyson equation

We first use the Schwinger-Dyson equation for the fermion propagator to calculate the

dynamically generated mass Σ of this fermion. In figure 1 we show the solution for the

dynamical fermion mass Σ as a function of α∗. A fit to the numerical solution in the

walking region 0.89 ≤ α∗ ≤ 1.0 [8] found agreement with the functional form

Σ = cΛ exp

[

− π
( α∗

αcr
− 1

)−1/2
]

, (3.1)

with c = 4.0. An earlier analysis and numerical fit [5, 7] found agreement with Σ ∝
Λexp[−0.82π(α∗/αcr − 1)−1/2]. Our calculations for larger α∗ show the expected shift

away from walking behavior. This shift is evident in figure 1 for α∗ larger than about 1.2.

In real QCD, precision fits to deep inelastic lepton scattering data, hadronic decays of the

Z, etc. probe the theory in momentum regions where Nf = 4 or Nf = 5, and yield, for the

effective Nf -dependent scale Λ
(5)
QCD ' 200 MeV and Λ

(4)
QCD ' 280 MeV, with larger values

for Λ
(Nf )
QCD with Nf = 3, 2. In actual QCD one thus has Σ/Λ(Nf ) ' O(1) for these low values

of Nf . These contrast with the limiting walking behavior, in which Σ ¿ Λ, as indicated in

eq. (3.1). Our calculation of Σ, shown in figure 1, shows that Σ/Λ increases substantially,

by about a factor of 30, from a value of about 0.01 at α∗ = 1.0 to 0.32 at α∗ = 2.5, much

closer to the value of O(1) for this ratio in QCD.

Another quantity of interest is the pseudoscalar decay constant fP , the Nf -flavor

generalization of the pion decay constant. For Nf = 2 QCD this is defined as 〈0|Jj
µ|πk(q)〉 =
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ifπqµδjk where 1 ≤ j, k ≤ 3 are SU(2) isospin indices. Here, we use a generalization of

this definition, with the symbol fπ replaced by fP and the SU(Nf ) isospin indices in the

range 1 ≤ j, k ≤ N2
f − 1. In QCD, one rough measure of the dynamical (constituent)

quark mass is Σ ' MN/Nc ' 313 MeV, where MN is the nucleon mass. An alternate

definition sets Σ ' Mρ/2; this would yield a somewhat larger value. Here we use the

estimate Σ ' 330 MeV. Using the value fπ ' 92.4 ± 0.3 MeV [16], one thus has

(

Σ

fπ

)

QCD

' 3.6 . (3.2)

An approximate relation connecting Σ and fP is [18] (with y ≡ k2
E)

f2
P =

Nc

4π2

∫ ∞

0
y dy

Σ2(y) − y
4

d
dy

[

Σ2(y)
]

[y + Σ2(y) ]2
. (3.3)

The integration is rendered finite by the softness of the dynamical mass Σ(k2
E). Thus,

the relation (3.3) suggests that for QCD, f2
π ' NcΣ

2/(4π2). For Nc = 3, this is Σ/fπ '
2π/

√
3 ' 3.6, which agrees, to within the theoretical uncertainties, with experiment. In

QCD, with Λ(2) ' 400 MeV, one has fπ/Λ
(2)
QCD ' 0.25.

In figure 2 we show our results for fP calculated from substituting our solution for

Σ(k2) into eq. (3.3). In the walking limit, fP has been shown to satisfy a relation similar to

eq. (3.1), i.e., it is exponentially smaller than the scale Λ. We display, as the dotted curve,

the fit from ref. [8] for the walking interval 0.89 ≤ α∗ ≤ 1.0, given by eq. (3.1) with c = 1.5.

Our results show the change from this walking type of behavior as α∗ increases above 1.2;

as α∗ increases from 1.0 to 2.5, fP /Λ increases substantially, from about 3× 10−3 to about

0.08. This is similar to the factor by which we found that Σ/Λ increased as α∗ increased

through this interval.

The strong increase in Σ/Λ and fP /Λ as α∗ ascends from the value 0.89 near the

walking limit to the value 2.5 deeper within the confinement phase is easily understood as

reflecting the removal of the extreme exponential suppression evident in eq. (3.1) and its

analogue for fP for α∗ − αcr → 0+. One does not expect such a dramatic change in the

ratio Σ/fP over this interval, and this expectation is borne out by our calculations. In

figure 3 we show the ratio of Σ/fP , which increases gradually from about 2.6 to 3.9. The

fact that we find a ratio comparable to the observed one in actual QCD, given by eq. (3.2),

can be understood as a consequence of the property that much of the strong dependence

on Nf divides out in this ratio.

4. Calculation of meson masses via the Bethe-Salpeter equation

4.1 General discussion

We denote the wavefunction for a hadron with a given flavor combination for the gener-

alized π, ρ, etc. as follows. Define the flavor vector fa ≡ (fa1, . . . , faNf ). Recall that in

the confined phase the global symmetry SU(Nf )L × SU(Nf )R × U(1)V is broken sponta-

neously to SU(Nf )V × U(1)V . We drop the explicit subscript V on SU(Nf )V henceforth.
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Figure 2: Values of fP calculated from eq. (3.3) for several values of α∗ (indicated by ♦). Dotted

curve is eq. (3.1) with Σ replaced by fP and c = 1.5 from a fit to the calculations for 0.89 ≤ α∗ ≤ 1.0.
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Figure 3: Plot of the ratio Σ/fP for 1 ≤ α∗ ≤ 2.5.

With regard to SU(Nf ), a f f̄ meson with a given JPC (where J denotes the spin, and

P and C are the parity and charge conjugate eigenvalues) is described via the Clebsch-

Gordan decomposition Nf × N̄f = 1+Adj, where 1 and Adj denote the singlet and adjoint

representations.

Let the generators of the group SU(Nf ) have the standard normalization Tr(TiTj) =

(1/2)δij . Then the hadrons transforming according to the adjoint representation of SU(Nf )

are comprised of (i) the set of Nf (Nf − 1) states

hΓ;ij =
1√
Nc

Nc
∑

a=1

f̄a Γ Tij fa (4.1)
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n2S+1 LJ JPC RSU(2)V
name M M/fπ

13 S1 1−− adj. ρ 775.8 ± 0.5 8.40

13 S1 1−− sing. ω 782.6 ± 0.1 8.47

11 P1 1+− adj. b1 1229.5 ± 3.2 13.3

11 P1 1+− sing. h1 1170 ± 20 12.7 ± 0.2

13 P0 0++ adj. a0 984.7 ± 1.2 10.7

13 P0 0++ sing. f0 ∼ 600+600
−200 6.5+6.5

−4.3

13 P1 1++ adj. a1 1230 ± 40 13.3 ± 0.4

13 P1 1++ sing. f1 1281.8 ± 0.6 13.9

Table 1: Data on relevant qq̄ mesons whose masses are compared with Bethe-Salpeter calculations.

n2S+1 LJ is standard spectroscopic notation, where n denotes radial quantum number. The symbols

adj. and sing. denote the adjoint and singlet representations of the SU(2)V isospin flavor symmetry

group. Masses are given in MeV. The last column lists the mass divided by a typical hadronic scale,

fπ.

where Tij is the Nf×Nf matrix with a 1 in the i’th column and j’th row, with 1 ≤ i, j ≤ Nf ,

i 6= j, and Γ specifies the type of particle (pseudoscalar, vector, axial-vector, scalar), and

(ii) the Nf − 1 states corresponds to the generators of the Cartan subalgebra of SU(Nf ).

Because of the SU(Nf ) flavor symmetry, it does not matter which of these N2
f − 1 hadrons

with a given Γ we use. We shall refer to these as the Nf -generalized ρ, ω, etc. In particular,

the spectrum of mesons includes a set of N2
f − 1 Nambu-Goldstone bosons (NGB’s) with

L = S = 0 and JPC = 0−+, transforming according to the adjoint representation of

SU(Nf ). The corresponding 0−+ singlet with respect to SU(Nf ), i.e., the generalized η′, is

not a Nambu-Goldstone boson because the corresponding U(1)A symmetry is anomalous.

Our analysis of meson masses is for the lowest-lying f f̄ states.

In QCD, there are several (light-quark) q̄q mesons that are of interest here. For the

reader’s convenience, we list these in table 1. A notation for the various states in the case

of general Nf massless quarks is SR, PR, VR, and AR, standing for “scalar, pseudoscalar,

vector, and axial-vector”, where the subscript R denotes the representation - adjoint or

singlet - under the SU(Nf ) flavor symmetry group. The experimental and theoretical

situation concerning the 0++ isoscalar meson f0 has been the subject of much discussion

over the years; indeed, this state may involve mixing with qqq̄q̄ mesons [19]. Because of

the complications in the analysis of this state, and the expected complications in a realistic

analysis of its Nf -generalization, the SU(Nf )-singlet 0++ meson, we do not attempt to

treat this in our current study.

In the Bethe-Salpeter equation that we use to calculate the masses of the mesons, the

flavor-dependent structure is simply a prefactor. Hence, the solutions of this equation have

the property that, for a given radial quantum number and spectroscopic form 2S+1 LJ , the

SU(Nf ) flavor-singlet and flavor-adjoint mesons are degenerate:

M(n2S+1 LJ ; flav. adjoint) = M(n2S+1 LJ ; flav. singlet) (4.2)

In view of this, we henceforth drop the subscript R and simply write V rather than Vflav.adj.

or Vflav.sing., etc. Note that this is different from the prediction from SU(Nf ) flavor symme-
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try (with degenerate quarks and electroweak interactions turned off) that the members of a

given representation of SU(Nf ) are degenerate. Experimentally, except for the pseudoscalar

mesons, the light-quark isospin-adjoint and isospin-singlet qq̄ mesons are nearly degenerate.

The physical ω meson is very nearly a singlet under isospin SU(2), so a measure of this

predicted degeneracy for the ground state 1−− mesons is (Mω −Mρ)/[(1/2)((Mω +Mρ)] =

0.87 × 10−2, quite small. Similarly, (Mf1
− Ma1

)/[(1/2)((Mf1
+ Ma1

)] = 0.04 ± 0.03 and

(Mh1
− Mb1)/[(1/2)((Mh1

+ Mb1)] = −0.05 ± 0.02. So for these states the prediction from

our Bethe-Salpeter technique for the special case of Nf = 2 massless quarks is in agreement

with the data for light-quark mesons in QCD. In QCD, one has Ma1
/Mρ = 1.59± 0.05 and

Ma0
/Mρ = 1.27.

An interesting result of the calculations of meson masses in the walking limit in ref. [8]

was that the ratios of these masses to fP are rather constant. Specifically, it was found

that in for 0.89 ≤ α∗ ≤ 1.0, MV /fP ' 11, MA/fP ' 11.5, and MS/fP ' 4.1, so that

MA/MV = 1.04 and MS/MV = 0.36, where the theoretical uncertainty is several per cent.

These ratios may be compared with the values in regular QCD which, as far as the light-

meson spectrum is concerned, are close to the values that they would have in the Nf = 2

chiral limit (with the understanding that the pion masses would actually vanish in this

limit if electroweak interactions are turned off, as assumed here). For the purpose of this

comparison, we do not try to use the inferred chiral-limit value of fπ [16], since to be

consistent we would have to do the same for the mesons themselves. For the comparison

between the extreme walking limit (WL) and QCD, we have

(MV /fP )WL

(Mρ/fπ)
' 1.3 (4.3)

(MA/fP )WL

(Ma1
/fπ)

' 0.86 , (4.4)

and
(MS/fP )WL

(Ma0
/fπ)

' 0.38 . (4.5)

A major output of the present work is the elucidation of how, as Nf decreases and α∗

increases, the ratios of meson masses to fP begin to shift toward their QCD values.

4.2 Numerical results

We next present the results of the numerical calculations for the masses of the mesons.

We solve the homogeneous Bethe-Salpeter equation as an eigenvalue problem, namely,

the Bethe-Salpeter amplitude as an eigenfunction and the mass of a bound state as an

eigenvalue, denoted generically as MB . First, as in ref. [8], we have checked and confirmed

that the flavor-adjoint pseudoscalar meson mass is zero to within the numerical accuracy

of our calculation. In figure 4, we show the values of meson masses divided by Λ calculated

from the Schwinger-Dyson and Bethe-Salpeter equations in the range 0.9 ≤ α∗ ≤ 2.5. In

figure 5 we plot the values of MB/fP in the range of 0.9 ≤ α∗ ≤ 2.5. In figure 6, we plot

the meson mass ratios MA/MV and MS/MV in the range of 0.9 ≤ α∗ ≤ 2.5.

Our calculations yield a number of interesting results. We summarize these for the

changes in these meson masses as α∗ increases from 0.9 to 2.5 as follows.

– 8 –
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Figure 4: Values of meson masses divided by Λ calculated from the Schwinger-Dyson and Bethe-

Salpeter equations.
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Figure 5: Values of meson masses divided by fP calculated from the Schwinger-Dyson and Bethe-

Salpeter equations.

1. The ratios of the meson masses divided by Λ increase dramatically, by factors of order

102, approaching values of order unity at α∗ = 2.5. This amounts to the removal of

the exponential suppression of these masses which had described the walking limit at

the boundary of the non-Abelian phase, as one moves away from this limit into the

interior of the confined phase.
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Figure 6: Ratios of meson masses calculated from the Schwinger-Dyson and Bethe-Salpeter equa-

tions.

2. MS/fP increases monotonically from about 4 to 7, thereby approaching to within

about 35% of the value 10.7 in QCD for Ma0
/fπ.

3. MV /fP decreases from about 11 to 9, rather close to the value ∼ 8.5 for Mρ/fπ and

Mω/fπ in QCD. As is evident from figure 5, this ratio MV /fP is roughly constant in

the upper end of the interval of α∗ values that we study.

4. MA/fP behaves non-monotonically, first decreasing from roughly 11.5 to 10, but then

increasing to about 11, within about 20% of the average of the values in QCD for

the isospin-triplet and isospin-singlet axial-vector mesons, 13 for Ma1
/fπ and 14 for

Mf1
/fπ.

5. Thus, the ratios MA/MV and MS/MV , which were found in ref. [8] to have the

respective values 1.04 and 0.36 in the walking limit, both increase in the interval

of α∗ that we study, reaching about 1.17 and 0.74, respectively, at α∗ = 2.5. For

comparison, these ratios are approximately 1.6 and 1.3 in QCD. Although the value

of the ratio MS/MV at α∗ = 2.5 is farther from its QCD value than is the case with

MA/MV , it is increasing somewhat more rapidly as a function of α∗, consistent with

eventually approaching the QCD value.

5. Conclusions

In this paper we have considered a vectorial SU(Nc) gauge theory with Nf massless fermions

transforming according to the fundamental representation and have studied the shift in
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behavior from walking that occurs in the region near the boundary between the confinement

phase and the non-Abelian Coulomb phase to the QCD-like behavior with a non-walking

coupling. Specifically, we have used the Schwinger-Dyson and Bethe-Salpeter equations

to calculate the dynamically induced fermion mass Σ, the spontaneous chiral symmetry

breaking parameter fP , and the masses of the lowest-lying qq̄ vector, axial-vector, and

flavor-adjoint scalar mesons. We have investigated how these change as one decreases

Nf below Nf,cr, or equivalently, increases α∗ above αcr, to move away from the above-

mentioned boundary into the interior of the confinement phase. Our results show the

crossover between walking and non-walking behavior in a gauge theory.

There are a number of interesting topics for future research using the methods of this

paper. It would be useful to construct a kernel for the Bethe-Salpeter equation that could

include more of the relevant physics, including instantons effects. Work is underway on

this. It would also be worthwhile to calculate the masses of radially excited mesons and

mesons with internal orbital angular momenta L ≥ 2, as well as glueballs and the mixing

between glueballs and q̄q mesons. We anticipate that the results of these calculations would

exhibit the same general properties that we have found with the ground-state q̄q mesons,

but it would be interesting to confirm this expectation explicitly. However, when one moves

this far away from the walking regime, one loses a simplifying features of our calculation,

namely the fact that we do not have to use an infrared cutoff on α. Given that lattice

gauge theory methods provide an ab initio framework for calculating hadron masses, we

hope that the lattice community will extend early efforts such as those of ref. [14] and

carry out a definitive study of hadron masses in QCD with an arbitrary number of flavors.

It would be of considerable interest to compare the results of the lattice calculations with

those obtained from solutions of Schwinger-Dyson and Bethe-Salpeter equations.
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